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1.Introduction

In {1} an abstract model was developed for the specitication of systalic "net-
works (2] and the verification of the correctness of their operation. The model
was applied to the verification of the operation of four systolic networks that had.
been suggested in the literature. In this report. we extend this mode! to allow for
networks with slightly more complicated types of computational cells. namely cells

that have periodic memory or multiplexing capabilities.

The motivation for this extension is that we have to free ourseives from the
simple inner product cell (3] if we want to use systolic networks in a wider range
of applications. it should be noted. however, that the suggested extensions remain B
very simpte in structure and should not result In a complicated design for the !j

individual cells. Also it appears that the most desirable approach to the design

of widely applicable systolic networks is to utilize a fairly general generic cell
which is flexible enough to be used in more that one systolic network. If this
generic cell were tc be controlled by microcode. then it could be applied easily ot

to the implementation of the suggested extended cells. o

The model presented in [1]1 and extended in this report is similar to another

model developed Independently by M. C. Chen [4]. Both separate the network

function from the specific details of a certain computation and allow for a precise

specification and a formal verification of systolic networks. However. the model in

E .
-
-

{4} is onented toward a procedural specification. while we followed a more alge-

v

e/ S
v

L oraic approach. We should also mention previous approaches (5.6] for formalizing
systoiic networks by means of a delay operator (7] and a notation that envisions

the flow of data as a wave front propagating over the network. This wave front
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notation has been shown to be useful in mapping given algorithms to systolic

implementations [(8]. However. the notation does not seem to be powerful enough

to describe the operation of any systolic network. especially if more elaborate . -

computational cells are to be used. 2
:

The extended model is applied to the description and verification of a pipe- T

lined systolic system designed for the computation of finite element stiffness A
matrices. This represents an important step in the finite element analysis exten- = _
sively used by engineers and scientists for the solution of boundary value prob- f

lems.

Very briefly. the finite element analysis [9] is a technique for solving partial

| A
B b

differential equations on a certain domain Q with given conditions on the boundary

of Q. In the case of linear equations. it invoives essentially the foliowing four

basis steps: 1) The generation of a finite element mesh that divides Q into m fin- i
ite elements. 2) The generation of elemental stiffness matrices H® ana elemental

load vectors f° for each finite element e. e=1...m. 3) The assembly of the glo-
bal stiffness matrix H and of the load vector f. 4) The solution of the linear sys- e

tem of equations Hx=f.

In the past two decades. many finite element software systems have been :

developed and widely used [10]. However. in practice. the time and storage
required by these systems to compiete an_ anaiysis may be extremely large. This
usually imposes severe limitations on the size and type of the problem that can

be handled and often leads engineers to use l|ess accurate models or lower

\"'?T’n I MO
. '. . ‘rI‘A N

':. degrees of approximations. For this reason. many researchers have considered

%

:9 some form of parallel processing in the finite element analysis. as for instance. -
p —_—
":I the use of array processors [11.12,13,14]). general purpose multiprocessors (15, 16], :
A»'_ or adaptive. special purpose multiprocessor systems (17.18). A common result in
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most of these experiments is that the time for data movement and interprocessor

. T

communication is very large and sometimes dominates the running time.
“a
A significant achievement in this area is the design of a finite element :I-_;f
machine at the NASA-Langley Research Center [19.20). In -this machine. a rec- __j
.
tangular array of processors is formed by connecting each processor to Iits eight ' j
nearest neighbors with a global bus connecting all the processors of the system. :
.'_.:1
Each processor is assigned to the computations associated with one or more node Y
»:
in the finite element mesh. Of course the nodes in the mesh should be mapped »'f1

to the available processors in a way that reduces the communications over the

global bus [21]).

. e

Along the line of systolic architectures. Law [22]) suggested a systolic net-

o p s

work to assemble the global stiffness matrix,. and Kung and Leiserson [3} and
Brent (23] designed systolic networks that can be used for solving the resulting "
system of equations. However, no attempts have been made to use systolic net-

works for generating the elemental stiffness matrices. which is the subject of this 3'_"_:

report.

The report is arranged as follows: In Section 2, we review and extend the
basic features of the systolic model presented in [1], and in section 3. we give a
general description of the system used to generate the elemental stiffness
matrices. The different components of the system are formally described in sec-

tion 4, where we aiso prove that the system indeed produces the stiffness matrix

corresponding to any element. in section 5. we outline a general technique for

the formal verification of the pipelined operation of any systolic network and then

PSPPI

apply this tochnique to prove that the suggested finite element system can be

. pipelined to compute all the elemental matrices. A conclusion indicates some

directions for further studies. ]
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2.Review and Extension of the Formal Systolic Model.

In this section. we Dbriefly review the main features of the abstract systolic
model presented in [1]. Basically a systolic network is represented by a directed
graph with two different types of nodes. namely interior nodes and /O nodes
corresponding to computational cells and /0 cells of the network. respectively.
The edges of the graph model the communication links of the network. In order
to identify the elements of the graph. every node is given a unique label and
every edge is identified by a pair (c.i). where c Is a color assigned to the edge
from a finite set of colors, and | Is the label of the node at which the edge ter-
minates. The only restriction placed upon the edge colors Is that edges directed
to the same node should have different colors and that the same holds for all

edges directed out of a node.

In addition to the graph that reflects the topology of the network. the model
associates with each edge an infinite data sequence which is the sequence of
data items that appear on the corresponding communication link at consecutive
time units. More precisely. let N and R be the sets of positive integers and real
numbpers. respectively. and set Fi6 = ARU{B), where 0 is a special element called
the "don‘t care” element. Then the data sequence n, associated with the edge
(y.) is a mapping nI:N-oRo such that n,(t)eﬁo is the ciata item which appears on
the link at time t. |If n,(t)=o for some t, this indicates that we do not care (or
do not know) about the data on (y.) at the time t. We use‘the convention of
denoting the pair (y. by Y, and the associated sequence by n, where 7 is the
greek letter corresponding to y. At this point, we note that we have chosen R to
be the set of real numbers because of the nature of our problem. More gen-
erally, A could be any set of items that can be transmitted on the communication

links of the network.
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Let ﬁo be the set of all sequences that contain at most a finite number of
non-0 elements. Then it is naturai to define the termination function T:ﬁo -N0=
N U(0) with the property that for any sequence 7. T () is the position of the last
non-8 element in 7. For the don’t care sequence defined by o'm:o for all t.
we then have T(o‘)=0. We also define the zero sequences t with ¢(t)=0 for

1<t<T (L) and any arbitrary large T (L).

The computation performed by a computational ceil with m input links and n
output links is now modeled by n causal sequence operators rlzlﬁolm-ﬁo.
i=1....n, one for each output link. In essence., a causal operator is such that the
" element of the image sequence can depend only on any element / of its
operands with j<t. If the condition /<t Is replaced by j<t. the operator is called
‘'weakly causal’. For the exact definition of causal and weakly causal operators we

refer to [11.

In order to model the computation of the entire network, we establish for
each node of the network the sequence equations describing its operatian, these
are the equations relating the Iinput sequences and the output sequences by
means of causal operators. Then. if possible. we solve the resulting system of
equations and obtain in this way an explicit relation between the network output
sequences and the network input sequences. This relation is called the “Network
I/0 Description®. Finally, for a verification of the operation of the network for a
specific torm of input sequences. we substitute these particular sequences into the
I/0 description. which. possibly after some manipulation, yields an explicit form of

the network output sequences.

As the above review already indicates, operators on sequences play a key
role in our model. One way of defining sequence operators is to extend known

operators on R to ﬁb by applying the operator eiement-wise to the elements of
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sequences. Examples are the sequence addition ‘+°, multiplication ‘*' and scalar
multiplication ‘.’. Element wise operators. in turn, can be classified in térms of
the resuit of any operation involving the don‘t care element 8. namely: 1) 0~
regular operators for which the resuit of any operation involving & is 8. This class
of operators treats 6 as a °"don‘t know" quantity, and consequently the resuit can-
not be known if any of the operands Iis not known. 2) Non O0-regular operators.
where O is treated as a special symbol that afftects the resuit of the operation.
Example are the operators mino and max, defined in [1). In practice. this class
of operators can be used to model a network where the communication links are
augmented by an additional wire to indicate whether the link carries valid data or
not. The operation of each computational cell is then dependent on this additional

piece of information.

A second class of operators consists of those defined directly on Ro. In
the remainder of this section we introduce several such operators that will be
used in the specification and verification of our finite element system. For simpli-

city, given any operator I‘:[Roln-oﬁo, the notation [P(el.---.en)](t), will  be
employed to designate the tth element n{) of the Image sequence
11=I'(£],~-.£n). This is consistent with the convention of using square brackets
for grouping. We will aiso use the symbol + for integer division and the Fortran

function mod O that specifies the remainder of an integer division.

The Shift operator n' : ﬁo - ﬁo is defined by

0 it r>0 and t<r
" fw =
Et-r) otherwise.
Hence. for ro0, n' inserts r O-elements at the beginning of a sequence and

therefore modeis the computation of a delay cell. On the other hand., for r<o0, ﬂr

~
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trims the first r elements of the sequence and thus is a non causal operator
which cannot be used to model computational cells. The role of the negative
shift operator is to provide in the proofs an inverse for the positive shift. More
precisely, for any sequence §. we have na §€ = & The converse is not

always true. in the sense that n' N ' ¢ = ¢ only if £@)=0 for t<r.

The Zero Shift operator n{):ﬁo - ﬁo has the same definition as n' except that

r
no inserts r zeroes at the beginning of a sequence instead of r O-elements. The
zero shift operator is useful in modeling delay cells in networks that initially set
the data on their communication links to zero. In such networks we must assume

that the entries corresponding to the time t=1 in any non input sequence are

equal to O rather than 0.

S . ﬁo - ﬁo is defined to model a cyclic accu-

mulator that starts operation at time t=r, accumulates a new element every s time

The Accumulator operator A’ k.

units and restart a new cycle every sk time units. The Accumulator operator can

r.k.s

be defined in terms of the following algorithm that computes [A £lt) for any

t>0. given the sequence elements £(/) for j<t.

IF <) THEN A" %S¢ = o /* accumulator is idle */
ELSE
BEGIN
t, =t - mod((t-r) + sk) /* time of last reset */
na = ((t-tr) + 8) + 1 /* number of elements accumulated */
rk na-1
S = T §¢ ts)) /* result of accumulating na elements */
/=0
END

Evidently, this algorithm is equivalent with
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[ 0
r.k.s aw = l

A

na
L &« tsD
/=0

where na and 'r are as specified before.

& = al.braz.be.---.a7.b7.6.6,~-~

then

2.3.2

A § = 0.b,.00 +b2...b +b, +b

17 1772773
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As an example. let

Q.n

,O.b4..,b4+b5...b4+b5+b6.0.b7..,6.0. o

where @ denotes an element that is equal to the preceding one.

The Muiltipiexer operator M:”"“'w"(

a multiplexer that has n inputs &1,---.6’,.

periodically muitiplexes its inputs with a time ratio of wilw2:- - «:wn.

£1,- . "en) : [Rol

n. R, s defined to model

it starts its opration at time t=r and

If the length
n

of the multiplexer cycle is denoted by k= [ w,. then the following algorithm

defines the muitiplexer operator
IF ¢<r) THEN MY €.+ . £ 1)
r 1 n
ELSE
BEGIN
tc =t - mod((t-r) + k)
Find the largest ineger 1<e<n

e
such that (-t ) < [T w
c /=1 /
wil...wn
[Mr (€1.°°~,€n)l(t) = ee(t)
END

As an example, let

c = 8] .82.' . '.87.08.89.O.O.° A

e=]

=0 /* muitiplexer idle */

/* start of current cycle */

/* determine interval within cycie */

/* chose corresponding input */

pe..
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and s
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n = byby.t.b;.0.00. "

then l&'Ei
1.2 f“;‘i

M3 “(.m = 0.0.a5.b,.b5.a5.b,.0.85.0." " R Ly

]

it is also interesting to note that the multipiexer operator can be used to 3
model a de-muitiplexer cell. For example. if we want to sample the sequence ¢ ,_E
s B

- ] el o

at times t=r.2r.3r.... . then we may express this operation as M:'r 1(5.6 ) where SR

x
0 is the don’'t care sequence introduced earlier.

The multipiexer operator can be used to define twc further operators,

namely. the expansion and the piping operators.

The Expansion operator 51,(555 =R,

t=r and is overwritten every k time units. It is formaily defined by

models a cyclic memory that is loaded at time

e g = M:""'](n e R ALY

which on the basis of the definition of the muitipiexer operator may be rewritten

as
9
:
0 ter
pre
‘n(t—tu) tar
a where t = mod(t-r) + k). For example. with { of (2.1 we have
b .
r“ = LI
- 52£ = O,b],O.O.O.ba.Q,O.O.bs.O,O.O.b7,0.0,0,0,6.
[. it should be noted that the accumulator. muitiplexer and expansion operators
E' are weakly causal operators, and that their defir.lions aliow us to model cells
' with memory capabilities. despite the fact that our abstract model does not expli-




citly allow the nodes to have memories or internal states.

Besides the causai and weakly causal operators used in modeling computa-
tional cells. some sequence operatars are introduced here for the sole purpose of
allowing us to simplify the description of data sequences. Following are two such

operators:

The Piping operator an : [ﬁ°]m~ﬁo defined by

onlen™ = MKl QTR Gl gk m,

and T(P:'n m'.- 2™ = mk. In other words. an concatenates the first k ele-
ments of each of the m sequences n°. e=1.---.m. and forms one long

sequence.

On the basis of the definition of the multiplexer operator it is easily shown
that the following algorithm is equivalent with the above definition of the piping
operator

IF¢>mk) THEN [an @ a™e = 8
ELSE

BEGIN

Find the largest integer 1<e &m such that t<ek

e ' ™o = 2%e-e-nio

END

k
in the following sections. we will use the abbreviations P (ne) for

e=1.m
k m K k
P (g .--+.m ). and Pm(n) for Pm(n,---.n). As will be seen later, the piping
operator is very useful for the verification of pipelined operation of systolic net-

works.
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The Spread Operator ©° : ﬁo --FT‘5 defined by

CedES t=1.(s +D+1.2G6+D+1. -+ -

1+s
©° ¢ =
o] otherwise
Hence ©° inserts s O-elements between every two elements of £. With the

sequence ¢ of (2.1) we have, for example

2, _
e E - 81,°.o.b1 ,0,0,82.6.°.b2,’ A

Controlling the operation of systolic cells.

r.k.s ) Mw 1.....wn

As mentioned earlier. the operators A r

and EI; can be used
to model systolic cells, where the indices r.k and s control different timings as for
instance. the reset times, the idle times and the active times of the ceill. One
way of monitoring these different timings in physical cells is by providing each cell
with a separate circuit that generates reset and idle signais. On the other hand.
timings may be monitored also by signals external to the cell. This external con-
trol method treats data and control signals in a uniform manner [24], and is

especially preferred if the timing signais can be propagated in the network systoli-

cally.

The external control approach Is equivalent with a redefinition of the opera-

tors where the control indices r.k and s are replaced by an additional control

argument. For example, the expression 'E’; §" used in modeling a periodic

memory cell may be replaced by E(£.v). where the nonperiodic expansion operator

E is defined by
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[E.nNI¢t-1) it »@)=0
[ECE. i) =
E(t) if yv@)=1

and the control sequence ¥ controls the resetting of the memory element; that is

1 tz=r, r+k., r+2Kk.< - -
y(@) =

0 otherwise

It shouid be easy to verify that in all the networks presented in section 4

.

external control signals may be propagated in the network systolically.
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3.Problem Definition and General Description of the System

The purpose of the systolic system presented in this report is to generate
the finite element stiffness matrices H®, e=1.---.m. for a given finite element
computation based on a given mesh on the domain Q of the problem. In orader to
simplify the design and the description of the system., we assume that all elements
are of the same type. and hence that the number k of nodes per element is the

same for all of them.

The cilass of problems to be considered is a fairly general class of 2-
dimensional, stationary. elliptic boundary value problems ({17]. The (i.i)th entry of
the symmetric matrix He. corresponding to the element e. 1<e¢<m. is given by

the general formula

2
e = e e - L
Hiy = L f o 8y ©, ¥ © ¥ dx dy fd=t.-++k @D
r,1=0 " Q
where a ;) are space dependent coefficients specified by the problem. and
e e
67/ e a"I ;]

e - = = ¢ e -
D.|rl, = Da': 3y’ Do‘r, r’.. and rl(x.y) denote piece~-wise smooth
th
basis functions with the property that rftx,y) Is equal to 1 at the / node of the
finite element e and to 0 at any other node in Q. The integration in (3.1) Is

performed over the area C)e of the finite element e.

Frequently in engineering applications the coefficients a, - r./=0,1,2 are
approximated by piece-wise constant functions on each element, in which case we

may rewrite (3.1) as

2
e e e ]
H = T a (0. y,) (D,9,) dx dy 3.2
i.] r =0 r.d J-oe r’i 17

e

where a , are constants on the element e. To evaluate these integrais, an iso-

e
parametric transformation (9] is used to map the domain of each element Q" into

a standard element J of the same type In another 2-dimensional space (.y).
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k T
x = [ ‘,oT,,T) X, 3.3.2
i=1
k _ __
y = L %0y y, (3.3.0) N
i=1
_— e — - —— "
where I(x.) = rl(x(x,y).y(x, », i=1,-+-,k, are the basis functions in the new
space .y)
The integrals in (3.2) are then evaluated numerically over & Instead of Q°.
Without entering into the mathematical details, we give only the final formula used
to evaluate H :
:
] 2 e 9 e~ — - - = = - -
H = & )
i ):_ a E %o det a.ya) DrVI(xa.yg) D,fl(xa,yg) 3.9
r.l=0 g=1
where q is the order of the quadrature rule used In the numericai integration,
& y.). g=1,+<-.q are the quadrature points with weights w_ and det’@.y) is the o

g9 g
determinant of the Jacobian matrix J of the transformation Q°~6. From (3.3),

this Jacobian is found to be

k P
1o e [ F(E Ber L D2 ¥y

Ko Ko ‘
Y21 VY22 L O, y, L D, ¥y y,

/=1 =1

Because of the regularity of the standard element §. we can easily write

- - 1

e — - — a'I = — ar, ]

the formulas for 7,‘”’ and its derivatives DI'/ =—— and Dz'/ = Then the - 1
ax dy

derivatives Dr;i' r=1,2 and I=1,---.k used in (3.4) may be obtained from the

transformation

D,¥,) =Y b , 3.5

1
02 ¥, D
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where J ° is the inverse of the transposed Jacobian matrix J . ]
—
] ¥
. It should be noted that the quadrature points and weights as welil as the )
- — a;i = = a;i
basis functions ¥, and their derivatives D, ¥, =— and D_,y, =—— do not depend :
i ivi - 27 - .
ax dy -—
",
= on the specific finite element that is to be processed. Hence. they may be com- "1
puted at the quadrature points ng.)Tg). and pre-loaded into the system before it "f'l
starts its operation which allows for their repeated use during the caiculations of ___4
1
H® for e=1.---.m. On the other hand, the derivatives 0171 and Dav’. in (3.3 :.:
N
have to be caiculated for each element using (3.5). e
5 We denote by V?(q) the vaiue of the basis function 7,079.70) and by A,’(g)
and vl'(g). r=1,2, its derivatives Dr tl(xq.ya) and Dr r,(xa.yg), respectively. Sup-
pose further that «7.y;), i=1,---.k. are the coordinates of the k nodes in the
. finite element e. Then the following algorithm computes the elemental stiffness
matrices H® for e=1.---.m. (The steps N1 through N5 in the algorithm are par-
titioned in a manner needed for the description of our systolic system).
‘ Algorithm ALG1
INPUTS
0 1 2
N« vl @). AI @). Al @)n, g=1,-+-.q and i=1,-+- k
2) For each finite element e=1.---.m
2.0 0f y7). i=1e ek
e =
2.2) ’r.l' r.1=0.1.,2
For each finite element ¢=1,---.m DO
» N1) For each quadrature point g=1,-:--,g compute the Jacobian of the iso-
parametric transformation from
| 2
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Ji @) Jaa@7 = (@8t e 9 :
[1.19 2,1‘7,‘[1" k”] X3 N }
2 2 -
U12@ Jp, @) A5@) - -8, [
e @ y

*« Yk

P P)

N2) For g=1.---.9 compute the temporary quantities

ABL ZEERA Y 2.

Py

1 1 _ 1 1 -
[1‘1 (q)'--Tk(g)J = [Jaz(a) -lel(g)J [A.‘(q)---Ak(g)]
2 2
r';’(g,) -Tf(g) “N12@ Uy @) Laf@ -8

N3) For g=1.---.9q DO

o

N3.D det@@ = Jy 1@ Jp,@ = Jy ,@ Jp @)

4
- - =1 ... 3
N3.2) V;(g) = F@ ﬁ(g). r=1.2, I=1, .k :
N3.3) T (@) = w_ detlg) v (g) r=0,1,2, =1+ .k i
. @ g det@) v,@. .2, . . -
N4) For i=1,-:-.k compute the approximate Integrals . \
oy
N4.1) For j=1,-++.i-1 T
/ 9 / .
Y= L @ v@ r.=0,2 e
I L Y i -~
0-1 L
/ q / J
Ne2 Y, = L ¥ @ 9@ r=0,1.2, 120, -.r ;
’ g=1 ;

NS) For i=1,---.k DO

N5.1) For j=1,+--.-1

2 2
o o .
H =17 [ a8, Y
1 Ry fra T

2 2
(-] (-] A
NS H® =2 T [ . ,apY
1 20 1, ora O’ i

where ¢, , equals to 1 1if re/, and to 0.5 if r=/.

Figure 3.1 shows a block diagram of the systolic system that executes this
aigorithm. It consists of a local memory LM to store the pre~ioaded values of
v?(q). A,‘(q) and Aiz(g), g=l.-+-.qg. and five systolic subnetworks N1---N5 that
are arranged in a cascade such that the output of & sub-network is an input for

a following sub-network. Each sub-network Is designed to perform the computa-

o . N - had o - CEUS- S d ot ) a® s . M emeA . A..m s & . _a_ s v % 2




tion in the corresponding step in ALG).

in order to compute the matrix H® for a certain element e. the coordinates

of the nodes (x,.e.yle), i=1,-++,k. and the coefficients ae r.1=0,1,2. for that ele-

r.il-
ment, are fed to the system via subnetworks N1 and NS5, respectively. The entries

e
1.’

the sub-network NS after a delay period of (q+3k+16) time units. where a time

H i=Y,---k, j=1.»+-.0, of the symmetric matrix H® are then obtained from

unit is the maximum time needed by any computational cell in the system to per-
form its operation. This is basically the time required to perform a Multiply/Add

operation, or a division whichever is larger.

Although this is a noticeble speedup of order k over the serial execution of
algorithm ALG1, the real advantage of the system lies in the possibility of pipelin-
ing the computations of the stiffness matrices for e=1.---.m. and of obtaining
one matrix every 3k time units. Of course. we also obtain the advantage of a
non-conflicting and smooth data flow in the system which greatly reduces the

memory fetch times.

CAPFAN
(:l,.u’k
Vi A ) .
L [EE8dy ) > N7 N4
"'l'»-,k
Ay
w
¢
e
NS
Ao,
n,

Cri,. . ., Kk
Lfvl, ;¢

Figure 3.1 - A general block diagram of the system.
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Finally. note that we have assumed that there is only one variable at each
node. that is the degree of freedom per node is unity. In the general case of d

degrees of freedom per node. the constants af r.1=0,1,2 are dxd matrices. and

I

consequently each entry H ;- 1-/=1.+- k. in the elemental stiffness matrix H® s
a dxd submatrix. To compute the d2 elements of H?l without slowing down the

system, we replace the subnetwork NS by d2 identical subnetworks. each of which

generates the corresponding entry in the submatrix HIo when provided with the

i
appropriate entry In the dxd matrix a .
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4.Formal Description of the System's Components

In this section. we describe the architecture of the five subnetworks
N1,-:-NS. that execute the corresponding steps in aigorithm ALG1. Moreover, we
will derive the /0 description of the individual subnetworks and prove that the
system generates an elemental stiffness matrix if appropriate input data are pro-

vided.

It should be clear that alternate designs for the components of the system
may be given. However. one advantage of the system described in this report is
its flexibility in the sense that only minor modifications are needed to use the
system for different values of k (element type) and q (quadrature formula). More-
over, our primary goal is to demonstrate the effectiveness of the formal model for
a precise specification and verification of systolic networks with computational cells

more complicated than those of the simple Muitiply/Add type.

4.1. The Subnetwork N1

The graph ot the systolic network N1 Is composed of 2q internal nodes as
shown in Figure 4.1 each node Iis labeled by two Iintegers (i.g) i=1.2 and
g=1.....q. where q is the number of points used in the numerical integration (3.3).

The graph also shows the color assigned to each edge, namely r, p oOr z.

Each interior node (i.g) represents a computational cell whose operation is

described by the causal relations

(,'9” = N (,,g 4.1.0)

plﬂ.g = N pl,q (4.1.0)
s ,,3k-2.1.1 -

Tetg =0 Mgps) Mg Mg Ng) (4.1.0)

where s=1 for i=2 and s=3 for i=1, and
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Figure 4.1 - The graph for Nl. Figure 4.2 - The structure of a typical.
cell (i,8) 1in N1, -
{.k.3 -
= 29t k. . R
x,lg A [p,'a C,’ql (4.2.2)
- . A@tit1 k.3 -
x,'a = A [pl,a (I,g] (4.2.0)
The graph in Figure 4.1 and equations (4.1)., (4.2) specify N1 complefely.
in order to analyze the internal structure of each cell (i.g) more closely. we first
note that equations (4.2.a/b) indicate that a cell should contain a muitiplier and -
two accumulators (see Figure 4.2). The accumulators start operating at times g+i \
)
and g+i+l. respectively. accumulate the output of the multiplier every third time }
b
1
unit and are reset to zero every 3k time units. The content of these accumula- !
—-— d
tors at consecutive time units is expressed by the sequences x,. ¢ and x,. e As !
' ’ \
is clear ftrom equation (4.1.c). each cell contains a&is0 a muitiplexer that starts :
(]
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operating at time g+i~-1 and muitipiexes the input LI and the contents of the
n accumulators with a time ratio of 3k-2:1:1. the delay element n® is introduced in
Figure 4.2 under the assumption that the elements ‘*’, A and M do not consume
any time. In practical implementations however, these elements do consume some

time and consequently the element labeled n° has the function of a synchronizer

-
rather than a latch.

After having described the architecture of the network, we prove the foliow~
ing proposition that gives .the I/0 description for N1, which is an explicit relation
between the network output sequences pa L 7r3 g g=1.r--q. and the network

; input sequences cl,1‘ 171'0. pl,g' i=1.2, g=1,-+-q.

Proposition N1.1 : I/0 description of the network N1. For g=1,---:,q, the follow-

ing relations hold:

i 2

P3q = n P1.q (4.3.2)
_ 3k-4,1.1,1,1 __3 - 3 3=
173'0 =N Ma.',3 ® 171'0 . )‘2.0 . k2.g . N *1,g . N xw) (4.3.b)
where
a
' _ .@ti k.3 _i=1 g-l
ig " A n qu 2N CIJ] (4.3.0)
- _ Agti+1k.3 i=1 g-1
xi'q = A n 1.9 £ N C,‘]] (4.3.4)
- Proof. To prove (4.3.b), we first note that (4.1.a/b) have the solutions
= nf! (4.4.2)
¢ig *© ¢ 4.a
. i=1
pl'g = N p,,g (4.4.0)
Then from (4.1.c) we obtain for g=1,--+.q that
. 3k-2.1.1 -
Y ”3.9 =N Mqﬂ ("2,9 ’ x2.g ' x2.g)
_ 3k-2.11 3 ,,3-2.1,1 - -
= fl Mg‘r‘l (3] MO (”'I,g'x'l.g‘)‘l,q) xa.g xe‘g)
L 2

L._A,;‘-.A-A_‘_‘A‘ A s m - - . 4 S PO - P . o
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r "
- ]
K where xl g and x’. g are as given in (4.3.c) and (4.3.d). respectively. Using pro- '
perty PS5 from the Appendix. this may be rewritten as
“ - _ nMSk-2.1,1 (Msk-2.1.1m3ﬂ nax nsi ) N ) ?
L 3¢ g+l g+3 1.9 ° 1.9 ° 1.9 © 2.9 ' "2.g ]
- Finally. we obtain (4.3.0) by applying property P13 from the Appendix. Equation .
. (4.3.2) results directly from (4.4.0).88
Ll
' in order to perform the calculations in step N1 of ALG1 for a certain finite ' _"
, element e, 1<e<m. the input sequences must be described by ]
b -
-
= - B
r'. LA R 4.5.2) o
. - P,
¢ =0 E? R € i=1.2 (4.5.0) ,
_ o g-1 3k, 111 2 2 2.2 L i
pl'g =N P2 (M] (:) 'g.o . N8 00-1 . e \oq'2)) g=1. q 4.5.0) e *
where Lo
e = = - =
T(ei) = T"g.o’ = T(-paJ) = T(qu,z) k 4.5.d)
4
and P
¥ L) = vo(g)
g.0"" ~ "t
1
wpg'](t) = At(q)
2 =
'pg,z(” = At g) -
CJ =
Y, it i=1
£ ® =
x: it i=2
in other words. E? and e; contain the coordinates of the nodes Iin the finite ele-
A
t ment e. and ’g o’ «pg1 and 'pg 2 contain the shape functions and their deriva- 4
o . . . .
,L tives. A pictorial representation of these input sequences In the case k=3 and 1
- ’
q=3 is provided in figure 4.9 using a time diagram in which the elements of the
; different sequences at consecutive time units are displayed. .
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Proposition N1.2 : With the inputs (4.5), the outputs of the network N1 are o K

described by @

gt 3k 113 2 2 2.2 L o

ps‘g = N1 P2 (M.I () ‘Vg'o . Ne WPg'-I . ne 00'2)) g=1. .q 4.b6.a - "

= I T3k g g=1l.-++.q (4.6.0 L

7
3.9 B

where T(8%) = 4 ana 8%t = 43 ,@). U3 ,@). J3 @ and U3 ,@ for =1, 2. 3

and 4, respectively.

Proof : The proof of (4.6.a) follows directly from (4.3.a). To prove (4.6.b). we tirst

3k
2

argument are repeated twice in P, e This repetition is only necessary for the

note that the operator P in (4.5.¢) indicates that the first 3k elements of the

operation of the subnetwork N2, and will not be considered here. Hence. we will
replace the last 3k elements of the repetition by don‘t care elements. which

reduces (4.5.c) to

_ g=1 11 2 2 2 2
Py = N M.l © 7‘0.0.09 \og‘,.nev

) (4.5.@)
g

g.2

Now substitution of the input sequences (4.5.a/b/e) into the 1I/0 description

P (4.3.0) results In
_ 3k-4,1,1.11 . * - 3 3-
E.'._ Tag = 0 Mgy (CHENE PYAIRIS YRR Lt S L Spe (4.7.a)
' Here by (4.3.c) and the definition of the E orerator and properties P1 and P7 we
= .
3 find that
- _ g+ k3  _g+i-2 1,11 2 2 2.2 gti-2 _3.2.e
b )\,'g = A n M.l () 'g.o . N6 ng . N e 'Pg.2 *n E16 6,.1
_ ~gti-2 ,2k.3 11,1 .2 e 2 e 2.2 e
g =N A M.I () [Vg'o"eil . N6 ['90,1'5,'1 .16 ['pg,2.£i]) )
5 1
' and by P14 that y
. Agti-1 1.3 2 e .
L4 Nig = 0 A 8% o, * &) (4.7.0) o+
.9
3 Similarly, we can show that o
t. _
= _ gt 1k3 2 2 2@
[.1 xl'g =N A e (09'2 §1 4.7.0)
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ates

For a further simplification of the equations (4.7.a), we consider the defini-
tion of the multiplexer operator with the restrictions (4.5.d) on the invoived . 1

sequences. This gives for g=1,---.q

A o dato®

_ gt3k-1 _e
"3.9 =N 8 _
(-]
where T(8 ) = 4 and
A, (@+3k-1) for t=1 3
2.9 g . 4
X, (g +3K) for t=2 {
Be(“ = 2.9 !
x1‘g<g+3k-2) for t=3 ‘
)‘Lg(g+3k—1) for t=4

Moreover. from (4.7.b), P11 and the definitions of the shift and the spread opera-

tors. we obtain that

oy _ @t 22 a1k o _
Apg@t3k-D = 097 e A log o * &3 N@+3k-1)
_ ALkl o
= A log 4 * &5 N0
k K
= e _ 1 e _ ©
= Loy ) &30 = L@ x =4, @
j=1 =1
where J% . (g) is specified in algorithm ALG1.

1.1

By a similar argument. it can be shown that 8°@. g°@ and £°@ are

equal 1o J?z(g). J; ,@ and ng(g), respectively. which proves the proposition ‘
a . . .
E’t and shows that the network performs successfully the calculations in step N1 of . j
h -]
. ALGY for one finite element e.m o
; L
r® {
r-. .
L 4.2. The Subnetwork N2 ‘i
r .
L :
} The graph of the subnetwork N2 is composed of q identical rows g=1.---.q !
: ® S |
1 (see Figure 4.3) where each row consists of three interior nodes (/.g). i=3.4.5. .

The edges are given the colors p.r.s and s as shown in the figure.
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Figure 4.3 - The graph for N2. _ Figure 4.4

For a given row g, 1<g<q. the computation of a cell may be described as

follows:

For cells (3.9)

= a3 =
"4.g =N "39 p4g n pag

_ g.3.1 . k k *
05y = N A [pgg * M (E2+3 sg Eaz"’sg 6 )l
For cells (4.9)
Tsg = n T4.g Psg = n Pa.g
- g+1.3.1 S D I 3k 34 x
°5,g =N A [p4'g Mgﬂ ( Eg+4 [174'01 . Eg’~3 ”4,g . 61
For cells (5.9)

=amll o )
Prg = gt1 Psg - 959 954

LIPS W LIS, e - - a iomy STy PP U U SRy TR YT S S S S St "~ o P

(4.8.3)

(4.8.0)

(4.8.0)
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From the above specifications. it is clear that cells (3.9) and (4.Q) have
identicat structure (see Figure 4.4) and differ only in the reset times of their
accumulators. multiplexers and memories. To reset these elements at the proper
time. external reset signal can be propagated in the network as explained in Sec-

tion 2.

Proposition N2.1 : The network I/0 description of N2 is given by

= ot =
776'9 =N "3.9 g=t.---.q 4.9.a)
=nm- 1l @? A A, ) =
p7‘g g+'| ps-c . 3‘q . 4.0 g-]. .. '.q (4.9-0)
where
_ 2 . 23k _ . 3k
xa.g =N [ps.g Eg+3 773,9] N (pa’g 521»2 "3.91 4.9.c)
k 3 2 k 3
- x -
Mg T P, EZ+3 Mg gl - 1 pg " E:'ﬂ " mg gl 4.9.0)

Proof : Equation (4.9.a) is trivial. In order to prove (4.9.0). we begin by applying

property P1.3 to equation (4.8.a):

=
. Py * ESk [-173'01 . 0)

_ g.3.1 .11 . 3Kk
6. =0NA M ek 9 042

5.9 g Pag g+3 "a.g

x
Then, we apply property P14 and use O to replace sequences whose values are

irrelevant to our analysis. This gives

_ 110, ,.% . 3k ) . 3k .
05'9 = N Mg b . N [pslg E:+3 ”3,91 [palg Ea*,‘, ﬂ3'91 . 0)
which from PS may be written as
=m0 ) 4.10.8)
959 = Mgt © 3.9 e

where )‘Sg is as described by (4.9.¢c). Similarly from (4.8.b) we obtain

- x =
Y L L. R Y

959 = Mgn 4.10.0)

4.0)

where \ is as described in (4.9.9). Finally. substituting (4.10) in (48.c). and

4.9
using P13 we obtain (4.9.b), which completes the proof. BB

-4
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The input links of N2 are directly connected to the outputs of N1, and

hence the input sequences "3 g and P3gq g=1.---.q are described by the formu-

las (4.6).

Proposition N2.2 : If the inputs to N2 are given by (4.6). then its outputs may be

described by

Teg = nd t3k+3 ge g=l.-+-.q 4.11.a
_ gt3k+3 1.1 2 2.2 - ...
P74 =0 My ey, . ey, . 08Ty, ) gsleiq @D
_ _ 1 _ ]
where T(r, D=T(r, N=k and ¥, =T, @. ‘I'g'z(t)-Tf(g) with T, (@) and Tf(g)

as specified in aigorithm ALG1.

Proof : The proof of (4.11.a) is trivial. In order to prove (4.11.b), we will ignore

the value of the first 3k+g+1 elements in the input Pj g and hence rewrite (4.6.a)

as
_ g+3k+1 110 2 2 2,2
pa.g =N M] e 'g,o . N ng . e 'pg.2) 4.6.¢)
In order to find the output sequences P g we obtain an explicit description
for xag and x4 g by substituting the input sequences into (4.9.c/d). Indeed.

from (4.6.b/c) it follows that

3k _ ~gt3k+1 1.1.1 2 2 2.2
pslg * ng3 ”3.g = N M.I © 79,0 . N6 ng . e pg.2) =
3k g+3k-1 _e
Eg+3 n 8

We then interchange the shift and expand operators using P6 and apply P17 to

get
. =3k _ g+3k-1 2 .,1.1.1 .2 2 2.2
pa‘g Eg*3 ”S,g = N n M1 e Vg,o . Ne cng . ne “’g.e’ =
3k _e

_ g +3k-1 3 -1 1,11 2 2 2.2 e
= N nn M] (=] tg'o . N8 -pg'1 . N e 00'2) . B (M)
_ o g+3k+1 1,11 2 .6 *
= N M, @ . ne" W,,@ . "9,1’ ., 0)

s
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]
where, as usual. the sequences irrelevant in this context were replaced by O .

Similarly. we obtain

3k _ ~gt3k+1 11,1 _* . 2
p3.g’E9+2 173'9—0 M.‘ b6 .06 .nNn6

and thus derive from (4.9.c) that

2 .6
[J2'1(q) . 00‘21)

- (]
. ~gt3k+3 1,11 . * 2 e o ?
xa'g =N M, 0 .08 W,,@ . qqul . 6 :
g+3k+2 . 1.1.1 . * = 2.2 e :
n M, 6 .06 .0N0W,,@ . pa'el) -
_ _g¥3k+3 110 2 @ . T
=N M, 6 . N6 W,,(@ . wajl . 0) L
L% 2 . @ = E
M, ® . Ne" W, @ . wa_zl .0 :
_ Agt3k+3 1.0 2 2 0 _ e . p
=N M] 0 . N6 [J2.2(g) . cpg.1 Jz‘](g) . 'pg.al . 0
By a similar analysis it follows that
_ ~@+3k+3 1,11 % - 2.2 .6 _ @
x4,g =N M, ®6 .0 .ne W, ,@. ©g.2 Jy2W@) . pa',])
Finally, we substitute into (4.9.b) the computed vaiues for ‘30 and x‘g

together with the input sequence Pj g and apply properties PS5 and P13 to obtain

_ ~@+3k+3 1.1 .2 2 2.2 1 ...
p7'g - n M] (e 'g'o N ne ’g'1 ’ n e 'g'a) g-1I :q

where .
y ¢ =4 @ .0 -2 @ .0 0 i
g.l 2.2 T Tg) 2.1 T Tg.2 ]
_ @ 1 _® 2 _ ! g
= J2'2(q) At(q) J2,1(0) At(a) = Tt @) !
= /° - @ = 72 g
10'2(:) = J.m(q) ‘°g,2(“ J..‘z(a) 00'10) T' @) _ j
This proves explicitly that the output sequences p7q contain the results of step 1
g N2 in ALG).®
3 g

r‘ - -
L = 5

.p'a'r'E" A
!
| LA
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4.3.The Subnetwork N3

As in the case of N2. the subnetwork N3 is composed of q independent,
identical rows. Each row performs the calculation corresponding to step N3 in
ALGY for a certain value of g, 1€g&q. Due to the variety of possible designs
and to the simplicity of the network. we will not describe N3 in any detail
instead. we will assume that, with the inputs described by proposition N2.2, N3
takes five time units to complete Its computation and to produce for any g.

1<g £q the outputs

- ng+3kf8 M]"] 2 - 2 = 2.2

179'0 = ] ((:) va,O . N6 va.1 .ne va.2) (4.12.a2)
_ ~@t3k+8 1.1 2 2 2.2
pQ,g =N M] e vg'o . e vg'] . nNe "9,2) (4.12.b)

r -
where v (1) = V,(g). ¥,

given in step N3 of ALG!.

/) = T @). and the values of V;(g) and T (@) are as

4.4.The subnetwork N4

in this subsection., we describe a network that compietes the numerical
/ 9 /
integration by computing the quantities Yf'l = T 9,' v,. for the ranges of the
. 0=
indices in the corresponding step of ALG1. The subnetwork is described by the
graph in Figure 4.5 and the node /0 descriptions of a typical interior node (/.g)

i=9,+++,843k, g=1,---.q. are given by the causal reiations

2
Tivig = Tig (4.13.a)
Pivig = M Pig (4.13.0
Cign =W v M0 " P4 (4.13.0)

As this description shows, each cell latches the p and r data streams Dby

two and one time units. respectively. It also performs a Multiply/Add operation

L . g F 3 - PO " . P PRSI a PO S

o oL
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and puts the result on the z output link.

Proposition N4.1 : The I/0 description for N4 is given by

4.14)

|

z z z 2z Z z
19,90 wige ¢-l,")v1 < § et 4..:,7,' 3Ke 6, G z’"-’,["
A LY 4 Ve N " RS TR |

Figure 4.5 - The graph for N4.

Proof : To prove this proposition. we first write the solutions of (4.13.a) and

(4.13.D) in the form

n2(l -9)

n

ﬂg.g =9, 843k, g=l.---.q

/.Q
n(l ~-9)

pl,g 99,9 i=9,---,8+3k, g=l.-+-.q

and then substitute them into (4.13.c). This gives
2(-9) /-9

cl,aﬂ = N [c,.a + N 179‘9 = N 99.01 4.15)

By Lemma 1 in the Appendix. the solution of (4.15) for a fixed i. 9<i<8+3k s

then found to be identical to equation (4.14). which compietes the proof.®
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In order to perform the computation in step NS of ALG1. the input links
-
l Z . i=9,--.,8+3k should be permanently set to zero. That is to say. in the 1/0 .1
description (4.14) we must set ('.1 = {, where L denotes the zero sequence oOf )
section 2. With this. we rewrite (4.14) as ]
[
. g i-8 i-9 *
= i-8+q-g - a ...
gt aEl L " mg . " Pg gl i=9.--+.843k  (4.16) 4
The next step in the verification of N4 is the caiculation of the output -."Ji
sequences for a specific form of the input sequences 7, g and pgy o As Figure
3.1 shows, the outputs of N3 are inputs to N4, and hence 1!90 and qu are .
’ ’ 1
. described by the formulas (4.12). Unfortunately, it is not at all simple to find an “'q‘
- -
explicit description of the output sequences for this specific input. In order to ﬁ_jf.:;:l
simplify the equations. we will replace the index i. 9<i<8+3k by i=9+3utv. where
-" the indices v and v vary In the ranges O<u<k-1 and 0<v<2. More descriptively. ':ﬂi
' we divide the 3k columns of N4 into k groups of 3 columns each. Thus. we ]
rewrite the network description (4.16) as - ‘
o
L
- . . q Qlutvtita-g mau-rv 7 . ] 17 ‘”ﬂ
g u.v.q+d L 9.9 Py.g (4.
g= ]
-
Proposition N4.2 : With the inputs described by (4.12), the network N4 has the
- following output. For O0Su<k-1 and 0<v<2 .
_ 2Q@u+tvitw 1,11 2 O 2 v 2,2 2.v0O2
cu'v_q” =N M1 ®" n, .nN6" N, . e n, ) (4.18)
where O is a modulo 3 addition. w=q+3k+9 and for 0</<2. we have S
A . o
T it r<I S AU e o
T('nu)= and n, (t)=)/l
. k-u=1 it r>l b+ if r>f o
‘ o
Proof : Using the input sequences (4.12) In (4.17) we obtain o
i
)
R
1@ —
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9 3utvew __3utv, 111, 2~ 2— 22—
Cyvgr) = 9210 ™My @y, o ne®v, | e v, 2
1.1 2 2 2.2
x
M.I e va’o . N6 vg'] . n%e vg'z) ]
2 Qlutvew )‘:’:n . w112, 62 242 .
i Purg ] 0.0 Vg1 A0V, ) 4.19)
where w=q+3k+9 and \ g is found by properties P4 and PS5 to be equal to
1.1, 2 u — .U — 2,2 .U —
M =
yooetnt v oL ne'n v . n%e®n v,.2 if v=0
= 1.1, 2 u4l = 2.u — 2.2 .u — =
Nvg T MOy, L 06 T L a%efat o ) it v=1
1.1.1 2 utl — 2 utl = 2.2 .u -
M =
, | ®°n vy, - N0 Vg2 - Aen! v o if v=2

The result (4.18) is then obtained by first applying P1 to perform the muiti-

plication in (4.19), then by pulling N

P5 and by applying the summation to the arguments of M (property P1.2).

Sutv out of the M operator with the help of

As an

illustration of the derivation procedure. we consider the case v=1 for which we

have
¢ - Butitw ;_’.: MV @2t 5 s \
u.lg+l T g= Y ! g.2  VYg.0' -
: 2,0 — 2.2 _u —
ne n vg'o o qu] . NTe7IN vg'] » vg'zl)
o Butitw M}""(een“” 7’3.0 et n2.1  n2e2aY "3'2’
where. from P1, T(n5‘°) = k-u-1, T(ng“) = T('n:'2) = k-u and
q q
2.0, _ - . =2 0 _ 2.0
0 = L0 v - = LS v, @) = .
g=1 g=1
q q
0.1, _ - _ =0 1 2,00
7, ®© = L “’g,o‘“ * vg’1(t-u)] = 'L (v/@) v, _ @) Yt t-u
g=1 g=1
q q
1.2, _ - _ =1 2 .2
n.(t) g);'l [va'](t) ] vg,2(t-")'] = 0}21 [v' @) vt-u(g)] Yt,t—u
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Finally, we appiy PS5 to get
_ ~2Q@u+Dw 11,1 2 0.1 2 1.2 2.2 .20
Cu.l.qﬂ =0 M, ©® 7, .né n, e m

which is a special case of (4.18) for v=1. The cases v=0 and v=2 are proved in

an exactly similar way.@

time | ’//,‘.;\‘
7k . ' . . . . . - t/ - Y‘V

- -

3¢ ’ . . . . . v Y,, .

Y AL Y;i
hr. . "’ . 13 ) o“ P . ': '3 .
b1 - . . . . "‘ - Y,, . .
4 a w
35 o » . A [ 3 *) 3 I/Yll YAJ/‘ 4 ¢ ‘
- 2 ¢ - 0
23 s . Y Yg)/ Y3 -t * .
_.-'Y:t / Y (;,c Y,:
311 . "’“ . ‘,/ s ) 7 g - T » L[] ]
P [ o . -7
40l S M A N \ A 5% /»//. . v .
‘ 3 o 7 0 POPTY e
PR Y” Y;v// 7", /"/ Y% Yu// . . . .
\ w0 e 7
b ')l; A Yaz- e A . . . .
v - (3 ¢
7y Y"c - nwe Y Y')“/ ' . . .
[ ¢ -
¢EL Ycl: Ya.t/ Ylll /// 7" . . . . .
s A T . . . . :
wl LS D Ce
ot -7
o1 Y’"( 1/ L . . « . . *
221 7.;. - . . ’ . . . . .
2t L Y,:c//’ ) . [y . ¢ i . .
__L/ A i A A 1 I S i I
s LG E G LB
gt‘-ﬁ»a Cot, 4 €. 2,4 e, 4 i, & 2,4 2,0, 4 1,4 .2, 64
Figure 4.6

Equation (4.18) shows that the output sequences ¢ contain the

u.wv.qgt
results of the numerical integration needed for the calculation of the stiffness

matrices in the next subnetwork NS5. It also specifies precisely the time of each
output data item. In figure 4.6. this specification is translated into a time

diagram, where we piot the elements of { versus time for the special case

uyv.gt+l
of k=3 and q=3.
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4.5. The Subnetwork NS

The network NS is composed of three ditferent rows (see Figure 4.7). Row - rﬂ

q+1 contains 3k identical nodes. It receives the constants dre on the links

/
p9.q+’l' rg.q” and 39,q+1 and distributes them appropriately on the b colored

links such that each integral ){; appearing on a z-colored link meets the

corresponding constant a:, at the right time. Row Qq+2 ailso contains 3k identi-
' r 2 /
cal nodes and computes the partial sums U” = L af, Y'I"/ and
) 1=0 ' : - —
2 e ! B
L €, , 8. ) V;'l for /#/ and i=j. respectively. where c., is as given in ALG).
I=r "¢ ‘ ‘ re ‘
e 2 r
Finally. row Q+3 contains only k nodes that complete the sum H” = T U”
: r=0 ‘ -
The edges of the graph are given the colors p, r. s. b, 2z zo. z] or 22 as

shown in figure 4.7. Note that we used three different colors zo, z] and 22 to

satisfy the restriction that no two edges ending at a node have the same color.

¥ To simplify the analysis, we consider each of the three rows separately.

W aay

A AASERALS & dbeamons

i Figure 4.7
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We consider first the row q+1 in which each cell simply latches the four

data streams z. p. r and s by one time unit. and selects the output on the b

link t0 be
n [h’. ”i.q-ﬂl if i=9+3u. u=0,+++.k-1
ﬁ/,qﬂ =y A pi.q+‘l if i=9+3u+l, u=0,---.k-1
N9 g4 if i=9+43u+2. u=0.+ k-1

where hl =0.5

ment step NS5.2 in ALG1. where only the

for /=9 and h,. =1.0 for i>9. The factor 0.5 is needed to imple-

I<r are explicitly available for the

d
"
computation of Hle/' while we have er,’ = )Jl; for I>r

For the proper operation of the system the Input sequences should be

described by

3

- 3

ﬂg'q_ﬂ =N Pk (ao)
_ w3

pg.q_',1 =N Pk (al) (4.20)
_ w3

09'q” =N Pk (a2)

where for j=0,1.2, T(ai) = 3 and ai(t) = a with O denoting the modulo

e
t=102/ .t-1°

3 addition operation. More descriptively., we input on each line three of the con-

stants a: r.1=0,1,2. repeated k times as indicated by the piping operator Pi (for

/"
more details see Figure 4.9).

Using the two Indices O<u<k-1 and 0<v<2 as in the previous subsection.

and noting that the input CI g+ is given by (4.18). we can easily show that

2Q@Bu+vi+tw+ 11,1 2 Oy 2 _1l.v

= 2.2 _2v02
Cyvagrz =1 My @ m, L et g YT et n2YPS w21
_ 3utviw+l 3
Byvage2 = 0 Peth,, - a) 4.21.0
where h = 0.5 if u=v=0 and h = 1.0 otherwise.
u.v u.v
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<+, ’03

fges
£,
rgr3

Figure 4.8 - A typical cell in row q+2 of N5.

The 3k cells. (i.q+2), 9€/<8+3k. in row q+2 have basically the same struc-
ture, each is a multiplier/adder equipped with a demuiltiplexer that distributes the

results t0 the output links pl+1q+2 and c (see figure 4.8 where u and v

v.g+3
equal the quotient and the remainder of —32 respectively). Formally, the operation

of each cell (i.q+2) is described by

- A2 1.2 ‘
Pittge2 =T M gyt - Pt X (4.22.a)
v - 1.2
(u.q+3 TOM _giws1 @t A0 (4.22.0)

where . = Bl.qu * ‘1 q+2 and the Iinput p9q+2 ls permanently set to the zero

sequence . For a description of the outputs c we solve (4.22) using

uv.q+3’
Lemma 2 In the Appendix. This yields
1.2 _
M g0 i=9
v 1.2 _
(u,q+3 =¢ N MI —9+w +1 ([n x - + xll .0 i=10 4.23)
) ]‘2 2 - . o
_,.— 0O M ower m Mg + AN+ )LL) i=11, .8+3k
where by (4.22) and (4.21). kl = )«3“"*9 Is given by
utviw+l 3 3y +v A0 .2 0y 2_1.vl 2_2.v02
‘e A\, =0 [Pk(hu,v a) * N M'l @"n,” . N6 . 1 6877, )]
- 6utviw+l . 3 1.1, 2 0.v 2 1vD1 2.2 2.v02
= )
N (Pk-u(hu.v a) * n’ M ", . N6, . N8, )

Moreover, with the help of property P17.2 we rewrite this as

e Gutviwtl v ,1.1.1 2 Oy 2 1y 2.2 2,v02
- = = s ) (4.24)
> A, = Agupyeq = 0 Q" My @%u, Y netu, n“e%u’

where
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rvor _ r.vor _ e r.vQor -
" hu.v av((vur)ﬂ) -, hu,v ar.vDr n, . r=0.1.2
that is Tw ") = T(a""h and
N u u
r.l - e r.l
K, ) = hu v & 4.25)
) » Proposition NS5.1 : With the input described by (4.18) and (4.20), the intermediate
! v .
' sequences cu,q+3' u=0,--+.k=-1, v=0.1,2, are given by
)
| utviw+l 1,2 3 2 22 2.1 2.0 = -
Y] M.l e [u.u R,y e, 000 for v=0
v _ Gutviws+l 1,2 3.2 1.2 1.1 1.0 = _
cu.q+3 ={ N M] n-e [u.u LA ”’u-ll . 0 for v=1 (4.26)
6utviw+l 1.2 ) , , x
N w M1 (0392 [u22+u01+u°°].6) for v=2
N u u
o where we extended the definition of u:'" such that u:'{ equais the zero sequence.
Proof . For the case /211, we first use PS5 to rewrite (4.24) in the detailed form
) 6utw ,,1.1.1 3 . .
i a M@ ezuﬁ 2, neau3° . nfe?ul) for v=0
_ 6utw+l ,,1.1.1 3.2 1,2 4.2 2,0 2.2 0.1 .
xl.-xs“”g- N M.l (ﬂeuu .neuu ,neuu) for v=1
n6u+w+2 M}'”(ﬂsezug'z ’ n462“;.0 ' nseauﬁ.i) - for v=2
a
: Then, tor the evaluation of "1-1 = )‘3u+v'+9' we note that 0<v’'<2 and
hence i-1 = 3u+v+8 should be written Iin the form 3wW-1+2+9, 3u+0+9 and
3u+i1+9 for v=0.1 and 2, respectively. With these forms for I-1 in (4.24) and the
; heip of PS5 we get
6u tw 1.1.1,.3.2 2.1 2 0.2 2.2 1.0 _
n M1 n-e K,y - ne~u, _, .67, _y for v=0
a?a,_, ={ %M Ml PRl L nte?u?? | nePud®) for v=1
»
! n6u-|-w+2 M1,1,1m392u0.1 ‘ n462u1'2 ' 0592;:.2'0) for v=2
! u u 7]
t
’ Similarly, we write /-2 as 3(w-1+1+9. 3Ww-1+2+9 and 3u +0+9 for v=0,1 and

2, respectively and get

T T -y ~w ek wY g ey o~ o= =
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6u +w 1.1.1 3.2 2.0 2 0.1 2.2 1.2 =
n M, 'e"u,_, . N6 b,y . 070% ) for v=0
4 _ 6utw+t ,,1.1,1 3 2 1.0 4.2 2.1 2.2 0.2 —
ax_, =y N M] N"e K,y -1’8 K,y - 07O “u-l) for v=1
+w+ 1. .
n6u w+2 M} 1 1((1362#20 ' n492“;,1 ' n592u5'2) for v=2

Then by adding these three formulas to get n*A,_, + n2x,_] + A, by and

substituting the result in (4.23). we directly obtain the equation (4.26) for 1Su<k-1.

The case u=0. that is i=9.10 and 11. can be analyzed in an exactly similar

manner yielding the resuit

6utwtvt] 1,2,.3.2 , 22 ol

N M1' e [uu 1. 8) for v=0
v _ 6utw+v+l 1.2,.3.2 1.2 1.1 * _
‘o.q+3 ={N ‘ M.' nNoe [uu + K, ], 08) for v=1
06u+w+v+1 M}.2m3e2 [#3'2 + us.'l + #2'01 ‘ 6.) for v=2

which by defining u.:']l = L may aiso be put in the form (4.26).88

0 1 2

u.qtd’ cu,q+3 and cu,q+3 Is

Finally, each group of three sequences {
considered as input to a cell w.q+3). 0Ku<k-1. in row q+3 of N5. The opera-

tion of a typical cell in row q+3 is focrmally expressed by

o 6u+w +2,3.1 1.1.1 0 1 2

Cugra =110, - A Mousw+2€y.q+3 + Cu.gea « Cu.qged! @27
_ 1.1 x x 2,0 1 2
=N [cu 6u+w+2(° -6 . cu.q+3 M n‘u,q1>3 + cu.q+3]) ]

where ¢, equals to 2 for u=0 and to 1 otherwise.

By substituting the sequences (4.26) Into the network description (4.27) we

easily find the description of the output sequences as

6utw+?7 2 —
- . e . )
¢ a+a = n 0" wu v =0, k=1 4.28

where
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2 2 rl 2 r-1 y
L T u + L T Kk, it u>0
r=0 I=r r=1 |=0
uu =
2 2
L T o T
r=0 t=r

Using the definition of uZ'l from (4.25) in (4.28) and comparing the result

with step NS in algorithm ALG1. we readily prove the following proposition:

Proposition N5.2 : If the inputs to the network N5 are given by (4.18) and (4.20),

then the network’'s output sequences are given by

- n6u~l-w1»7 e2 m

cu.q+4 u

u=0.+-+ k-1 (4.28)

]

where T(T[u) = k-u and Eu(r) = H peu

Proposition N5.2 states that after an initial time period of 6u+3k+Q+16 units,

each output link cu q+4 will carry the elements of the um off-diagonal of the

stiffness matrix H®, separated from each other by 2 time units.

To summarize the behavior of the entire system. we show in Figure 4.9 a
time diagram of the data on all the input and output links of the global system.
It represents a translation of the sequence equations (4.5) (4.20) and (4.28) for
the special case k=3 and q=3. The data items in the input sequences &,. &,.
”9,q+1' 99,q+1 and °9,q+1 depend on the finite element that is being processed
and hence they must be provided from outside the system. On the other hand.
the data in p‘l.g' g=l.-++-.q do not depend on a particular finite eiement and
thus, as mentioned in Section 3, they are provided from a memory local to the

system.

in general, the time for compieting the computation of one element stiffness

matrix is 9k+Qq+10 time units. In the next section. we will prove that the computa-
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non for different elemental stiffness matrices can be . peiined through the system
and that the elemental stiffness matrices can be generated at a rate of one

matrix for every 3k time units.
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5.Verification of Pipelined Operation

For a given systolic network that has been shown to perform successfully a
certain computation, we want to study the issue of repeating the same computation
on different gata in a pipelined fashion. Assume that a certain systolic network N

has the 110 description

N,

i = I“.(E].'“.& ) i=1,°.p 5.

n

where Ei' ji=l.--+.n and ;. i=},+-++.p are the Input and output sequences of
the network. respectively, and I‘i, i=1,-+-.,p denote certain causal operators that
model the behavior of the network. Suppose also that for a certain input descrip-

tion

(. =N a, [=1.-+".n (5.2)
with given integers rj and sequences @, we were able to show that the outputs

are described by

7, = n’' 8; i=1.-++.p (5.3)
with certain integers s/ and sequences 4, That is. in other words. suppose that

when (5.2) is used in the equations (5.1), then we were able to prove that

o’ 8 = rl.(n'1 @ - a’” @) i=1,++.p (5.4)

The calculation of the eiements of BI., i=1,+++.p., from those of ai.
j=1.---.n using the network N shall be called the computation "C". The time of
this computation is defined as the time required by N to complete C from the
moment when the first non-0 input entered N to the moment when the last non-0

output was produced. More precisely.

Time ) = max( T@F B): 1<i<p) = minC ri: 1<i<n) (5.5)

where T is the termination function defined in Section 2.
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Often. it is desirable to repeat the computation C. say m times. with gif-
ferent data sets A9=(a7:/‘=1.---n). e=1,-+-m. Let us denote these m instances
of C by c®. e=1.---m. In many networks. this may be accomplished by pipe-~
m

lining C1. +++. C The time difference between the initiations of two succes-

sive instances c? and Ceﬂ will be defined as the pipe separation T of the
computation C. iIn this case. the inputs for the different instances of C should
be pipelined on the Iinput links. That Is equation (5.2) for the input sequences

should be repiaced by

g =l PT_ @ j=1.+++.n 5.6)
where we used the asterix in E; to indicate that the sequences represent the
input data during the pipeline operation. We will also use £7 to represent the
inputs (5.2) for a specific instance c® of the computation. This * and e super-
script notations will be used in the remainder of this section for sequences on

any communication link.

If the computation can be successfully pipelined on N with a separation 7. -

then by using the inputs (5.6) in the network I/0 description (5.1), we should be
able to prove that the output sequences during pipelined operation are described

by

- T e - . 8 0
n, =00 Pl 8D i=1,-++.p (5.7

in order to ensure a successful pipelined operation, the pipe separation T
must be large enough so that the inputs of the different instances c® do not
overlap and the corresponding outputs do not overwrite each other. The first
condition implies that 7>T(a7). j=1.-+-.n. and the second that T3T (8.
i=1,--+.,p. In other words. the minimum pipe separation Tm(C) for the computa-
tion C is equal to the maximum span of all the input and output sequences in C.

where the span of a sequence Is defined as the time ditference between the first

‘l
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and the last non OG-elements in the sequence pius 1, that is the time during
which the sequence carries imformation reievant to the computation. Hence. from
the viewpoint of pipeline operation, a network that can be used to pipeline a

computation C with a pipe separation 1‘m(C) achieves maximum efficiency.

In order to prove (5.7) from (5.6) and (5.1) without repeating the effort
spent In deriving (5.4), we use the negative shift operator and the equation (5.2)

to rewrite the pipelined input (5.6) as

2 _ A T -rf ,e -1 ...
€, =N Pe='l.m n €I) =1, .n 5.8

where £7 are the inputs that would be vused if the Instance c® of C had been
performed on N without any pipelining. Next. we substitute (5.8) into the network

110 description (5.1) and obtain for i=1,:+-.p

E 4

- rl .7 -rl,e rn T -rn,e
m =T P p @ EPLeceT PO @ TTE DD (5.9)

The remainder of the proof is based on the use of the different properties
in the Appendix for factoring the shift and the piping operators out of the causal
operator I".. If the computation can be successfully pipelined through N. then we

should be able to transform (5.9) Into the form

* i

7'; =ns e

T -si e
P (0 Ty .&,

o =1.m ) ) I=1,---p (5.10)

which by (5.1) and (5.3) directly reduces to (5.7).

it should be noted however that there exist computations for which there is
no value for 7 for which (5.10) is derivable from (5.9) which means that the com-
putation can not be pipelined. On the other hand, we can identify a class of
computations for which pipelining is aiways possible. We use the term “lnert" to
identity computations in this class. In other words., a computation C on a systolic

network N is called inert if it has the following two properties

1) At its initiation, C does not care about the data on the non input

, ¢ W T
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’ communication links of N. that is we may assume that at time t=1, the data .

in any non input sequence are 08°'s. This implies that any delay in N should ] ;4

be modeled using the shift operator and not the zero shift operator. . 1

2) Only O0-regular operators are used for modeling the cells in N. This

implies that the network does not treat & as a special symbol. -~ i:

It Is always possible to pipeline an inert computation C through the

corresponding network N. In fact we may simply chose the pipe separaticn 7 to :—-A ii

be the time of the computation as defined by (5.5). With this value of T. Ce” 4

does not start before C® is terminated. Of course. we are not Interested in such -]

large values of 7. and hence. the probiem arises of finding the least value of T - E}

for which (5.10) is derivable from (5.9). o

T~

As should be clear from the above discussion, the ability to derive (5.10) ) _3

from (5.9) is the major Issue in veritying the pipeline operation of any systolic ;'f E

network. and this ability depends principally on the value of 7. However, for any < 1

inert computation C. we know that there exist a value for which (5.10) is derivable %

from (5.9). |In order to find the least possible 7., we start with 7 = 'rm(C) and
proceed to factor out the shift and piping operators from (5.9) untii we either
reach (5.10), which is our goal, or we cannot continue the factorization due to
our small value of 7. In the latter case, we increase 7 appropriately and repeat

the derivation procedure.

For ail the networks presented in Section 4, where all the computations are
inert and the maximum span of all input and output sequences is 3k. it can be
proved by the above technique that the m instances of the computation of the
stiffness matrices can be pipelined through the system with a separation
T = 7_ = 3k. hence. the entire system can be used to generate the m stiffness

m

matrices in a time equal to rc+3(m-1)k, where tc=9k+q+10 is the time consumed
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by the first instance of the computation. In order to illustrate the derivation pro-
cedure, we will apply it to the verification of the pipeline operation of the subnet-

work N4,

5.1. Pipeline verification of N4

Before starting our verification procedure. we recall that in section 4 the

network 170 description of N4 was found to be given by equation (4.16). which is

q -8+q - -
= T nla+qngQ
g=1
Moreover. when the inputs for a certain instance Co of the computation are

Cian Tog * Pog i=9, - +,3k+8 5.11)

”gg = @ *t3k18 Je g=1.---.q (5.12.2)
e _ .gt3k+8 _e
pg'g =N vq

then the outputs are given by

g=l.>+-.q (5.12.0)

2/ +3k+q-9 _e
9 n

=N j

e =Q .
€ g4l I=9,-+:.3k+8  (5.12.0)

where the detailed forms of the sequences 33 and v:

for C°. and the sequences 'nf containing the results of c® are specified by

containing the input data

(4.12) and (4.18). respectively. For the following discussion, we do not need

these detailed forms. It suffices to know that TG:) = Tw?) =3k and T(nf) = 3k-

e
g
(i-9). and hence that the minimum pipe separation is Thm = 3k.

if the computation C is pipeiined through N4 with a separation of 3k, the

inputs shouid have the form

£ _ gt3k+8 3k -6, _ _g+3k+8 3k -(@+3k+8) _e
rrg.q = N Pe=1.m(va’ = N Pe=1.mm 179'9) (5.13.a
and
o g+3k+8 _3k e, _ .g+3k+8 3k -(g+3k+8) @
Pgg = 0 Pez1m¥g = 0 Poz1.m 0 Pg g 513D

—etd

®
-




pr LA S e it Shu eI MCER SN R o A e et M Svme i e Bt Wi S vl o e Mt At i Jeuil Andi b A i e PR r I A AR SR Il hatt Sl S At et et Ja i i g e S

\
e b o

- 46 -

(au aa gl I SN
;'._'1_.-','. .

AL W Y

!’ : Using this in the network I/0 description (5.11). we get the pipeline outputs

N - -
:ﬂ in the form -
Lo 1

- . q . :
£ - I-8+q-g _i-9 _g+3k+8 _3k -(@+3k+8) _e e
: = .
g+3k+8 _3k ~(@+3k+8) @ o

n Poz1m® Pgg! 61 .
y

Now. by properties P1 and P8 in the Appendix we obtain g
-
* _ _I+3ktq 3k -u+3k+q) 3 /-8+q-g _i-9 e e 1
Ci g1 = 0 Pozimt 0 921 n @7 mg g * Pggl) (519 S

which by (5.11) and (5.12.c) reduces to _
=4
x _ _i+3k+q 3k i-9 e -
(,'qﬂ = N Pe=]'m(n 1;,) (5.16) )

Finally. because of T@' 1% = 1-9+T@®) = k. we use P8 to write (5.16)

VA
y jl‘;'.'.'.'.'

2/ +3k+q -9 PSk

_ )
= e=1.m M’

E 4
cl.qﬂ

which proves that the sets of results ('nle: i=9,-.-.3k+8) of the different instances
] L ¥3

e=1,---.m will be correctly produced at the rate of 3 it the set of inputs

;9

“g

. v:; g=1.-+-.q) are pumped through N4 at the same rate.
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6.Concluding Remarks

m )

This paper demonstrates the power of the extended systolic modei by
applying it to the specification and formal verification of a systolic system that

can pipeline the computation of the elemental stiffness matrices.

-

' There were no difficulties in establishing analytical proofs for the opera-
tion of the different components of our system. The reason for that may be
the absence of feed back loops and the fact that our system does produce
what we called an inert computation. However, an analytical verification of a

. systolic network is not always possible. and any conditions under which a net-

(&

work is analytically verifiable using our model are as yet still unknown, in part

due to our incomplete sequence algebra. As a means for alleviating this

problem. a computer program was de‘veloped that soives iteratively any system
of consistent causal equagions. This solver may be used in the verification of
particular instances of computations whenever analytical verifications are not

possible. The details of this soiver/simulator will appear elsewhere.

Although the abstract model has been used here to specify the archi-
tecture at the level of trje computational celis, the same mocJyl can aiso be
used for lower or higher levels of architectures provided we define appropri- ._;!_J
ately the domain A, of the data items that are transmitted on the communi- o
cation links of the network, and the corresponding operators.

Besides its value in demonstrating the power of the systolic model. the

‘ ' system that generates the eiemental stiffness matrices appears to have merit of
;', its own. In fact, it Is a contribution to the design of an integrated systoliic ol ]
L 94
finite element machine. For the implementation of any such machine. two R
: alternatives may be considered: 1) We may use a systolic network similar to _ J
| ]
| the one proposed in (22] to assemble the global stiffness matrix and then S
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apply one of many systolic networks suggested in the literature [3.23.25]) for
solving the resulting linear systems of equations. 2) Or we may use the sys-
tem described in this report in a larger system that employs an iterative
scheme for completing the finite element analysis. Further research is needed
to assess the merits of the two approaches and to determine the global confi-

guration of the system.

In addition to being adequate for VLS| implementation, the design
presented in this report has the Important advantage of being modular in the
sense that if the system Iis designed for a specific value of k (element type)
and q (quadrature formula). it can be easily modified to perform the analysis
for different values of k and q. Of course the design is independent of the

finite element mesh or the number of elements m in this mesh.

We have shown that for the general class of problems described in
section 3. the computation of the elementai matrices is completed in approxi-
mately 3km time units. However, a careful examination of the design shows
that this time may be reduced to (2k+1)m for some special problems in which

the coefficients af are equal to zero for r=0 or I1=0. Examples of this

/
important class of problems are the heat flow, the plain strain and plain
stress problems [9). To obtain this reduction in time, some control parame-
ters have to be changed as well as the forms of the input sequences. At
this point we note that with the technique described in section 5, it can be
proved that a successful pipelining of the operation on the modified network
requires a pipe separation 7 equal to 2k+1. This is larger than the minimum

pipe separation 7m=2k for the computation. which means that the modified

network cannot operate at maximum pipeline efficiency.
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3

Finally. we note that it is not simple to define a measure that estimates "]

~ b 'J

the efticiency of systolic networks. An intuitive measure would be Uiy where T o |

C
is the time needed by a systolic network to complete the computation, P is

the number of computational cells in the network, and C is the number of
operations to be computed by the network. This measure. however, does not
take into consideration the type of operation performed by a cell. which ranges
in our case from simple memory cells to ficating point dividers. It aiso
ignores the benefit obtained by the regular movement of the data in the net-
work. In [26]) the authors suggested a8 more elaborate measure that takes into
account the band width of the input and output links in the network in com-
paring the efficiency of the different systolic networks. Both measures estimate
the utilization of the computational cells in a network without difterentiating
between the different types of cells. This is acceptable if all the cells in the
network are of the same type. However. if the network contains more than one
type of cells, as Is the case with our system., we believe that the utilization of
each cell should be multiplied by a weight that reflects the hardware complex-
ity of the different cells. More work is needed to develop an efficiency meas-

ure of this type.
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Appendix
R
’
In this appendix we list some properties about combinations of the different 3
operators defined in this report. All the properties are directly verifiable from the
definition of the operators and are very useful in simplifying any manipulation of ...4
the sequence expressions. It should be noted that the zero shift operator is not ] .‘
:j included in any property. This is due to the fact that it was not used at all in ‘
t‘ modeling the networks presented in the report. - _j:
& "
3 Most of the properties take the form ‘“sequence expression = sequence j_]
3 expression”. However, some have the form " sequence expression - sequence - j
expression®. where we formally define the implication operator - as follows: - i‘;
IF for any t either MW=E) or MW)=8 THEN £-7 ;
that is 7 is equal to § after replacing some of its elements by 6. Consequently, g ?;;j
.
if £&-n. then we may replace ¢ by 7 in any sequence expression as long as 0 is ‘ t-:_:'.‘
treated as a don't care and not as a special symbol, that is in the contest of - 3
inert computations. Of course, if é-n and 7n-¢ then ¢=7. o .i
P1) For any element-wise operator ‘op’ with 6 ‘op° 0=0 we have
1.) For T =N, ©, E or P o
I'€) 'op’ T(m) = T op’ N e
1.2) M;""""””(e1,~--,en) ‘0p’ M;” """ "”mr--- n.) '
M:” """ "ag, rop’ my)- - 0E, op” WD =
1.3) As a direct result of P1.2 we have L
& ‘op’ M:”""wn(nl,---,-nn) = M:”""wn(le ‘op’ 'n.‘l o, [ ‘op’ nnl)
1.4) if, in addition. ‘op’ is a O-regular operator then
¢ opr =0 ¢ '"!i

where T() = min(T(M-r. T&)} and L) = EU) ‘op’ 7(t+r)
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P2) For the scalar multiplication operator °.’. it follows that

21) For T = Q. 6, E or P

w . T =Tw . &

wl...wn
22) w . Mr My~

P3) Composition of O with itself

2

annne=n¢
3.2)n'1ne=e
3.3)nn'1e=e

3 £ ~nn ¢

P4) Composition of N with ©
r+Dk _r

o n ¢ =n e ¢

PS) Composition of N with M

wl,..wn

-.1;)=Mr ([w.n]l.---.[w.nnl)

if and only if £(1)=8

for r20 and any k

s wl..wn _ AWV l....wn __s LA
5D N Mr (e].---.en) = M”_.s n £.| N en)
for any rand s > -r
wl,...wn _ AW l..wn ..
52) N Mr (el.-'-,en) = Mr (nen . ﬂe1 . . nen_])

53 M;" 1.

wl...wn _
5.4) Mr+1 (e.l.-“.en) =

wl..w

n
: IR

55 M

P6) Composition of N with £
s , _ .8
6.1)5',‘+sn ¢ =0° £ ¢
_r-r
6.2 Elr‘ﬂ ¢ =00 Elr‘ﬂ
6.3)E:‘n"e-n"5: ¢

o a

4

..wn R
(£.|,--’,£n) = Mr

r

ooo'en) = M_l

1....wn _k k
(g 61,-”.0 en)

where k = w]+-'-+wn

Mw1...,wn
r+l
wl..wn

(51‘. . .'en)
€. -0 a9

where q = w,t--:-tw,_,

tor any r and s > r
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P?7) Composition of N with A

r.k.s r-u.k.s

n' ¢ =qn"a ¢
r+l.k.s

7.1 A

~r .r+l.k.s

7.2) A e =0 a’ A ¢

P8) Composition of N with P

@ - P « 9

r k
s N P e=1.m

e=1.m
K

r ,e r .k e
8.2) Pe=1,m(n &) N Pe=1,m(€ )

" p

k ] K -r ,e
e=1.m

€ = Py m@ &

-r e -r e
8.4 P‘;ﬂ.mm £€) -~ A Pl;:].m(e )

8.3) N

K K
8.5 P (&) - n P’,‘n_] )

P9) Composition of © with itself

e o ézeker£=ekr+k+r€

P10) Composition of 6 with £

E‘: es-'l £ - _as-'l ¢

P11) Composition of 6 with A

AT.k,s es-l £ = E‘: es-I Al,k.] ¢

P12) Composition of & with P

Sk s-1

e, _ .S-1 Kk e
Pa=1.m(9 £E) =6

P13) Composition of M with itself

13.1) if ei = M:"")(nr---,nn) then

k~n.1..
r+n

k-m.1..1

13.2) Mr M

k-n-m,i,..

1
M ((,n]',-..-nm'zl_..

r+n

RO Y VPN NI S o

M (er...,e”...‘:n) = Mr (E]-"'-

'1(c'£]'...'€ ) . -n]'...

for u < r

if T&® < k-r

it T(e® < &

it 0 A g% - ¢°

-.en) for m+n < Kk

"

Cataa a2 NR A

o
Py

-
PR

ok

Iy T RTREATLI
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NP & Y
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P14) Composition of M with A
14.) ATKS M.‘,""](e1,-~-,£s) = ATkS £ for 1<r<s
r.k. 1.1 IS DO
14.2) A Moy = Ml )
I -y
where n; = r n ‘fu

u=1

P15) Composition of £ with P

e, _ e
E) Poarm @& = Pay (€]
P16) Composition of A with P

nk
e=1.m

1.k.1 e

1.k.1 e, _ phk k.
A P € = P, @ £

P17 Other properties involving the multiplication operator ‘*°

17.0 EJ;H £ *qn ~ e . aa g i T < kr

1....1 n IR IR DR |
] §g.r-"&py) * P =00 M, Qo v lpy)

. r=01,++.,n~1 and Dn is the

i
172 0 M o

where {_ = n((lnnr)ﬂ) . Er

modulo : - dition operation on integers.

Next., we state two lemmas that can be proved using the above properties .

Lemma 1 : The system of difference equations

Eg"’] = N €g*Ag g=1."‘,k

has the soiution

r
= ¢+ T 0
=1

! A r=1,.- .k

€ i

r+l

Lemma 2 . The system of ditference equations

= 2 1.2 j = PP

Pigy = MG Ihy + p)) I=rg. oy
1.2 -

(, =N Msﬂ([xl + p'.] .U I=ry. !y

with the condition Prg = ¢ has the solution
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